
A Junior Coder Survival Guide

Keith O’Conor

CTO, Romero Games

Want to talk a bit about THINGS I WISH I’D KNOWN when getting into the industry,

and some things to KEEP IN MIND for those who just have, or are planning to...

A little bit ABOUT MYSELF

Ph.D. at Trinity College Dublin

Canada for ten years

Radical - GRAPHICS PROGRAMMER - Prototype series

Ubisoft Montreal - TECHNICAL LEAD - Watch_Dogs, Far Cry

Moved home LAST YEAR to join John & Brenda at Romero Games

Three parts to being a junior game coder:

- Getting a JOB

- Day-to-day CODING

- Being part of a TEAM

To get a job, you NEED TO DO two things:

- KNOW your stuff
- MARKET yourself

OBVIOUS requirement #1: you need to KNOW A PROGRAMMING LANGUAGE

C++ is the BEST LANGUAGE to learn for gamedev

Seems to be CONTROVERSIAL for some reason, and disappointing to see some
UNIVERSITIES shying away from it

If you’re not being taught it, LEARN IT YOURSELF. I was taught Java in college!

It’s true, C# is popular because of Unity - although Unity’s engine itself is written in
C++

EMPLOYERS LIKE C++ EXPERIENCE, even for Unity jobs:

Understanding CPUs: registers, instructions, function calls, virtualization...

Understanding MEMORY: cache usage, allocation patterns

...understanding the FUNDAMENTALS, which leads to a better coder

Brenda put it best - just look at the JOBS

For CONSOLES and AAA, C++ knowledge is non-negotiable

Being MULTILINGUAL (C++, C#, Lua, Python) is a good sign of a well-rounded
coder.
Picking up other higher-level languages are much easier ONCE YOU UNDERSTAND
C++

OBVIOUS requirement #2: MAKE GAMES!

So EASY these days - so many RESOURCES for learning & doing

Good MOTIVATION: game jams! On your own, or with others.

24/48hrs are fun, but I LIKE 1GAM for students because it means you’re more likely
to tackle and THINK THROUGH problems that you might otherwise hack around in a
short jam

First step in getting a job - APPLY!

vs.

Your main role in finding a job: make it EASY for people to WANT TO INTERVIEW
you

APPLICATION & COVER LETTER: Be professional - nobody will hire a sloppy coder
CV: max 2 pages, don’t pad, spell check
WEBSITE: Clean & easy, Contact details, CV, Portfolio (doesn’t have to be FLASHY,
get to the point)
SOURCE: Use source control, make it good code (clear, concise, easy to read,
well-commented, well-structured)
EXECUTABLES: No missing dependencies(eg. missing DLLs), TEST on another
machine
VIDEOS: Embed on the site
SOCIAL: You will be googled, behave!

Most important: CODE - you will be JUDGED, "Would I want this code in my
codebase?"

You’ll finally get a call for an INTERVIEW

Do your homework. Play THEIR GAMES - you’ll likely be asked about them (BE
DIPLOMATIC! And don’t fanboy or overly criticize)

Steer conversation towards YOUR BEST WORK (rehearse talking about it
beforehand)

Two-way process; have QUESTIONS FOR THEM (anything; project, tools, life in
studio, city, etc.)

Aim for them: find out WHAT YOU KNOW, and HOW YOU THINK

TECH INTERVIEWs can be anything - practice the COMMON code questions

I’ve been asked to write string reversal on a WHITEBOARD, been sat in front of
WORDPAD, had tech interviews that lasted FULL DAYS, been interviewed by a room
of 9 PEOPLE...

Stressful!
If you get STUCK, stay CALM
Identify ASSUMPTIONS,
Talk through your THOUGHT PROCESS
Ask for CLARIFICATION

Last resort; say you DON’T KNOW, describe how you’d FIND OUT

Once you do get a job, comes the fun part - CODING!

SO MANY things I could about here, so instead I wanted to touch on a couple of the
MOST COMMON PITFALLS hit by juniors

But first, one SPECIFIC to get out of the way...

// Comment your damn code!

EASY TO FORGET but so important for a HEALTHY CODEBASE…

What seems OBVIOUS to you while knee-deep in the problem isn’t necessarily so

Write comments FOR OTHERS, but also for you SIX MONTHS FROM NOW - you’ll
write a lot of code between now and then

But I’m more interested in talking about HIGHER LEVEL concerns...

One of the MOST IMPORTANT LESSONS a junior coder can learn - or any coder
really - is about CODE COMPLEXITY

Juniors in particular have a strong tendency to OVER-GENERALIZE their solutions
They want to solve this problem once and forever, and try to deal with EVERY
EVENTUALITY and possible use.

Generalization means more ABSTRACTION, which means more COMPLEXITY,
which means HARD TO UNDERSTAND code, which means more BUGS

Or worse, juniors want to SHOW OFF by solving problems in clever way with coding
acrobatics. Same result: COMPLEX, BUG-PRONE code.

With SENIORITY comes a strong desire to keep things SIMPLE yet neatly functional.
Good code “JUST WORKS” and is READABLE, DEBUGGABLE and
MAINTAINABLE.

Easier said than done - game development is INHERENTLY COMPLEX - Frostbite

Where complexity is UNAVOIDABLE, make it OBVIOUS and UNDERSTANDABLE

BEST GUIDELINE: err on the side of only fixing the immediate problem, but leave
room to build on.
Some generality can be prudent; keep SHORT-TERM PLANS in mind when solving
problems
LONG-TERM PLANS CHANGE, so complexity can easily be premature.

JOHN: "You're going to be writing new code later because you'll be smarter"

[screenshot courtesy of @repi]

At the OTHER END of the spectrum… resist the urge to HACK it together to just get it
working now!
Deadlines always loom, there’s always more work to do.

Sometimes it’s hard for JUNIORS TO DISTINGUISH between a hack and regular
code.
Ask, “Is this going to make my life harder in the future?” Experience helps to know the
difference.

Sometimes a hack is JUSTIFIED as a short-term stopgap.
But beware, TECHNICAL DEBT is a silent and deadly KILLER of projects.

In a similar vein, a 98% SOLVED problem is still a PROBLEM - only solving the
general case isn't always enough

Recent bug; after HOURS of debugging, finally found THE CAUSE in an obscure part
of the build pipeline….

else
{
 // todo
}

Realistically, most ‘todo’s remain that way for the REST OF THE PROJECT, and
probably into the next and beyond.

UNREAL ENGINE codebase: 6,315 occurrences of 'todo' at time of writing

good code

simple

maintainable

debuggable

stable

With all this in mind, there are three THINGS TO CONSIDER when working on any
given code or feature:

How easy will the code be to MAINTAIN - is it readable, understandable, obvious
and/or well-commented?
How easy is it to DEBUG if something goes wrong?
Is it likely to cause STABILITY problems if something goes wrong? How RISKY is it?

The last one is particularly important, because it not only affects you it AFFECTS
EVERYONE ELSE….

That brings me to the last thing I wanted to talk about: TEAMWORK

One of the things I love about gamedev is the CONTRAST between coders, artists &
designers

Everyone has an AGENDA of sorts; designers = FUN, artists = BEAUTY, coders =
FUNCTIONALITY

An important part of being a game coder is learning to work with the other disciplines
to ACHIEVE A SHARED VISION.

Without a doubt, the most important part of making it all happen is
COMMUNICATION

I gave a talk at STATE OF PLAY earlier this year about communication, and my
experiences working with other disciplines

There’s lots I could to say again, but I really wanted to REITERATE ONE POINT:

don’t be an asshole

Seems like an OBVIOUS point, but it’s worth stating anyway.

Far from a problem with only juniors, but they can sometimes arrive THINKING THEY
KNOW MORE than they actually do.

There’s always some coder who TALKS DOWN to other members on the team,
particularly artists & designers.
They see themselves as the SMARTEST and so dismiss everyone else’s opinion.

It leads to an “US vs. THEM” attitude and is TOXIC to team spirit

The WORST THING you can do as a coder is to just say….

...NO to a request without bothering to give a valid reason beyond TECHNOBABBLE.
I’ve probably done it myself.
If you do, they'll probably just FIND A WAY to do what they want to do anyway.

Instead, EXPLAIN restrictions, and give ALTERNATIVES

Games need EVERYONE working together in the same direction.

Take any chance you get to EXPLAIN HOW THINGS WORK
Be approachable, MAKE TIME for people
Notable trait among the BEST CODERS I’ve worked with

Thankfully KNOW-IT-ALL juniors are a relatively small minority. Much more common
is having A CASE OF….

IMPOSTOR SYNDROME: A feeling of somehow having stumbled into the job without
really deserving it, and that you’ll be found out at any minute.

This is compounded by the fact that everything seems to take LONGER THAN YOU
THINK IT SHOULD.
This is usually only self-persecution - if you’re worried about your perceived
performance, talk to your lead.

The bad news: the impostor feeling will probably NEVER GO AWAY! I’m still feel like
I’m making it up as I go along, and just hope people don’t ask too many scrutinizing
questions.

The good news: juniors are generally hired for their POTENTIAL, NOT THEIR
EXPERTISE. Now is your chance to LEARN ALL YOU CAN, and grow into your new
role!

Being able to LEARN FROM YOUR TEAMMATES is part of what makes gamedev
teams so awesome

Try and FIGURE THINGS OUT YOURSELF, but don’t get stuck for too long - ASK
FOR HELP, even if it’s just to talk something through out loud

The BEST WAY TO LEARN is seeing how other coders solve problems, and what
they think about
Even the MOST SENIOR coder still has things to learn from talking through with
OTHER CODERS

If possible, find a MENTOR - a lot of coders are generous with their time and happy to
help enthusiastic students and juniors

[http://stephaniehurlburt.com/blog/2016/11/14/list-of-engineers-willing-to-mentor-you]

http://stephaniehurlburt.com/blog/2016/11/14/list-of-engineers-willing-to-mentor-you

A more structured and invaluable way to learn is to ASK FOR REVIEWS

Code reviews are awesome, but the earlier the better - CODE DESIGN reviews can
be as productive if not more

Seniors will have a different PERSPECTIVE on your code & design, and the problem
you’re solving
They’ve SEEN IT BEFORE
Or they can think of POTENTIAL PROBLEMS that you might not
Or they have a better idea of the BIG PICTURE beyond your work
Or know some PART OF THE ENGINE that has an impact on your work
Or they know SOMEONE ELSE who is working on something similar or has related
expertise
And so on

Don't be DEFENSIVE - learn!

One LAST POINT because I’ve seen it with many juniors...

As you settle in and FIND YOUR FEET on a game team, you probably hope to get
straight to work on some SEXY FEATURES… AI, or advanced shaders, or core
gameplay….

...only to find yourself WORKING ON UI or something else that might not really
interest you that much.

A LARGE AMOUNT of game coding is NOT SEXY at all - build pipelines, localization,
save games, asset exporters, etc. - but still VITALLY IMPORTANT to the overall
game.

Don’t be DISCOURAGED - as time passes you’ll gain EXPERIENCE, confidence,
and the trust of the team, and so work on more HIGH-PROFILE features.

No matter how seemingly minor the work is, there are always INTERESTING
PROBLEMS to solve - find them, and LEARN FROM THEM.

And KEEP LEARNING. There are tons of great resources out there.

Having lunch at your desk? Pull up GDC VAULT!
Don't understand something or never even heard of it? LOOK IT UP!

Learn about OLD TECHNIQUES and keep up on new developments.
Keep STRETCHING yourself.

You’ll NEVER RUN OUT of things to learn, and that’s exciting - right?!

@keithoconor

keith@romerogames.com

http://www.fragmentbuffer.com

