
Copyright © 2005 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
© 2005 ACM 1-59593-013-2/05/0004 $5.00

Geopostors: A Real-Time Geometry / Impostor Crowd Rendering System

Simon Dobbyn∗

Trinity College Dublin
John Hamill†

Trinity College Dublin
Keith O’Conor‡

Trinity College Dublin
Carol O’Sullivan§

Trinity College Dublin

Figure 1: Real-Time Virtual Crowds in an Urban Environment

Abstract

The simulation of large crowds of humans is important in many
fields of computer graphics, including real-time applications such
as games, as they can breathe life into otherwise static scenes and
enhance believability. We present a novel hybrid rendering system
for crowds that solves the classic problem of degraded quality of
image-based representations at close distances by building an im-
postor rendering system on top of a full, geometry-based, human
animation system. This enables almost imperceptible switching be-
tween the two representations based on a “pixel to texel” ratio, with
minimal popping artefacts. Seamless interchanges are further facil-
itated by exploiting programmable graphics hardware to efficiently
enhance the realism and variety of the dynamically-lit impostors,
thereby also improving on existing impostor techniques. To test our
system, our virtual crowds are embedded in an urban simulation
system (as shown in Figure 1). The results demonstrate a system
capable of rendering large realistic crowds with the visual realism
of a high-resolution geometry rendering system, but at a fraction of
the rendering cost.

CR Categories: I.3.7 [Computer Graphics]: Animation— Colour,
Shading, Shadowing and Texture — Virtual Reality

Keywords: human modeling and animation, simplification/level
of detail, image-based rendering

1 Introduction

∗e-mail:Simon.Dobbyn@cs.tcd.ie
†e-mail:John.Hamill@cs.tcd.ie
‡e-mail:Keith.OConor@cs.tcd.ie
§e-mail:Carol.OSullivan@cs.tcd.ie

Although many new games are released each year, it is very un-
usual to find large-scale crowds populating the environments de-
picted. Until recently, real-time applications either resorted to fixed
view methods, or could only provide for a small number of de-
tailed virtual humans at any time. Fixed view crowds, such as those
employed as spectators in several Electronic Arts sport games, are
realistic from a distance. This method works well for this genre of
game, however its application is limited as a result of the crowds
cyclical behaviour and the fact that they become unbelievable once
viewed from other angles. The more detailed geometric humans
as seen in the GTA series from Rockstar can only be displayed in
small numbers due to processing and display limitations. Typically
fewer than 50 humans are observed at any one time.

So why is there such a lack of large virtual crowds in real-time ap-
plications? Such applications need to deal with having limited re-
sources available each frame. With many hundreds or thousands of
potential virtual humans in a crowd, traditional techniques rapidly
become overwhelmed and are not able to sustain an interactive
frame-rate. Therefore, simpler approaches to the rendering, anima-
tion and behaviour control of the crowds are needed. Additionally,
these new approaches must provide for variety, as environments in-
habited by carbon-copy clones can be disconcerting and unrealistic.

We present a system that enables the rendering of large crowds of
virtual humans at interactive frame rates. Our crowd system pro-
vides for a hybrid combination of image-based (i.e. impostor) and
detailed geometric rendering techniques for virtual humans. By
switching between the two representations, based on a “pixel to
texel” ratio, our system allows visual quality and performance to be
balanced. We improve on existing impostor rendering techniques
and present a programmable hardware based method for adjusting
the lighting and colouring of the virtual human’s skin and clothes.
The system is implemented in an urban simulation, and takes ad-
vantage of the occluding nature of buildings to allow greater variety
amongst the crowd with reduced memory overhead.

The paper is organised as follows: in Section 2 we introduce related
work with regards to rendering large-scale crowds and how to intro-
duce variety within the crowd. Next, we describe the modelling of
a virtual human’s geometric and impostor representations, followed
by our new technique of switching between the two representations
based on a pixel to texel ratio. We then describe how these repre-
sentations are rendered in real-time, and how we introduce variety
in how the models look. In Section 5, we discuss the optimisation
techniques we used for implementing the crowd in a urban environ-

95

ment. Finally, we tested our crowd system both alone and within a
large-scale city environment and the results are presented in Section
6.

2 Background

2.1 Visualisation of Virtual Crowds

The visualisation of large-scale animated crowds is an area of re-
search that has been receiving an increased amount of interest in
recent years. Even though there has been extensive research con-
ducted on human modelling and animation, the majority of it has
been concerned with realistic approximation of limited numbers of
humans, often using complex and expensive geometric represen-
tations. With regards to large-scale crowds, these approaches are
too computationally expensive and different approaches are needed
in order to achieve interactive frame rates [Musse and Thalmann
2001], [Tecchia et al. 2002a]. Impostors and low-resolution geo-
metric models can provide the means whereby large crowds can be
animated and rendered successfully in real-time.

In the work of Tecchia et al. [2000], pre-generated impostors are
used in place of a virtual human’s geometric representation. This
involves the offline rendering of a set of images of the human model
from different viewpoints. At run time, depending on the human’s
position with respect to the viewer, the most appropriate impostor
image is selected and displayed on a quadrilateral dynamically ori-
entated towards the viewer. Unfortunately, since virtual humans are
animated objects, they present a trickier problem in comparison to
static objects. As well as rendering the virtual human from multiple
positions, multiple frames of animation for each viewpoint need to
be rendered. This greatly increases the amount of texture memory
required.

Aubel et al. [2000] proposed dynamically generated impostors to
represent the virtual humans. This approach uses less memory than
pre-generated impostors, since no storage space is devoted to any
impostor image that is not actively in use. Unlike dynamically gen-
erated impostors for static objects, where the generation of a new
impostor image depends solely on the camera motion, animated ob-
jects also have to take self-deformation into account. The solution
of Aubel et al. to this problem is based on the sub-sampling of
motion. By simply testing distance variations between some pre-
selected points in the virtual human’s skeleton, the virtual human’s
impostor is updated only if the posture has significantly changed.

Recently, Ulicny et al. [2004] succeeded in rendering complex
scenes involving thousands of animated individuals at interactive
frame rates. They achieved this by storing pre-computed deformed
meshes for a frame of animation in OpenGL display lists and then
carefully sorting them using the OpenGLSceneGraph 3D toolkit
to take cache coherency into account. In [de Heras Ciechomski
et al. 2004], they improved on their performance by using 4 level-
of-detail meshes for their model, thereby achieving a frame rate
several times higher.

2.2 Virtual Human Variation

Ulicny and Thalmann [2001] state that a crowd composed of the
same individuals with the same behaviour would not be convincing,
even if each such individual, viewed in isolation, would be very re-
alistic. They highlight that, compared to the simulation of single
virtual humans, multi-agent systems pose different conceptual and
technical requirements and constraints for the design of the system.

The main technical challenge is the increased demand on computa-
tional resources, as a direct result of the increased number of virtual
humans in the simulation. In comparison with single-agent simula-
tions, the main conceptual difference is the need for efficient variety
management at every level, whether it is visualisation, motion con-
trol, or animation.

Therefore, to successfully model real crowds, virtual humans in a
virtual crowd should look, move, and react differently to each other.
By adding even subtle variations in the way each agent looks and
moves, the realism of a virtual crowd can be greatly increased. With
respect to using impostor techniques for rendering virtual humans,
Tecchia et al. use multi-pass rendering to modify the colour of cer-
tain areas of the pre-generated impostor images of the virtual hu-
mans to enhance crowd variety [2002b]. Ulicny et al. [2004] create
several template virtual human meshes, which are then modified
by applying different textures, colours and scaling factors to allow
variation.

2.3 Level Of Detail

The fundamental idea behind Level of Detail (LOD) is that, when a
scene is being simulated, an approximate simulation model is used
for small, distant, or unimportant objects in the scene. For each
frame, the appropriate model or resolution is selected usually based
on the object’s distance to the camera [Luebke et al. 2002]. Brogan
and Hodgins [2002] use simulation LOD to control the movement
and actions of large groups. By providing a simplified version of a
physically simulated character as a simulation LOD, they were able
to simulate large groups by dynamically switching between these
LODs. O’Sullivan et al. [2002] describe a framework which incor-
porates levels of detail for crowds and groups. In addition to using
subdivision surfaces for increasing and decreasing the geometric
detail of characters, they propose the idea of conversational and so-
cial behaviour LOD. Random keyframe animations are chosen for
characters not highly rated, while more sophisticated motions that
are synchronised with speech are applied to more salient characters.

The area of LOD provides a computationally efficient solution for
the simulation of crowds. With respect to our system, we use two
LODs for our virtual human representation: an impostor and a geo-
metric representation which will be described in the next section.

Figure 2: Generation of Impostor from 17 by 8 Viewpoints

96

3 Virtual Human LOD Management

For our virtual human’s highest LOD representation, we use a two-
layered model consisting of the skeleton and the skin. The skeleton
is an articulated structure consisting of a series of interconnected
joints. A single mesh is used to represent the skin layer and allows
each vertex to be assigned a set of influencing joints and a blending
weight for each influence (which is done in 3D Studio Max). Using
a plug-in written in MaxScript, the skeletal, mesh and keyframe
data are exported from 3D Studio Max into our system specific file
formats.

We use pre-generated impostors for the virtual human’s lowest
LOD, which involves replacing a 3D object with an image of the
object mapped onto a quadrilateral. This is advantageous mainly
because it avoids the cost associated with rendering the object’s full
geometry. There are a number of reasons why we chose this ap-
proach over using low-resolution geometrical models. Firstly, less
triangles need to be rendered when using an impostor instead of a
low-resolution mesh. Secondly, automatic tools used to generate
low-resolution meshes sometimes do not give the required results,
thus necessitating a lot of time-consuming editing by hand. Finally,
switching between two meshes of different resolutions can be quite
noticeable as a result of the silhouettes not matching.

Figure 3: Normal Map Image for a Frame of Animation

A MaxScript plug-in was written, based on the work of Tecchia et
al., to render the impostor images of the mesh from within 3D Stu-
dio Max. Before using the plug-in, the mesh’s skeleton is animated
with a simple one-second walk loop. The plug-in allows:

• The generation of an impostor detail and a normal map
image for a particular camera viewpoint.
These images are generated from 17 by 8 camera viewpoints
as shown in Figure 2. It should be noted that for generation
of the impostor detail image, the diffuse colour of the mesh’s
material is set to white and the texture of the head’s material
is grey-scaled to facilitate the introduction of variety (which
will be illustrated in Section 4). Each pixel in the normal map
image encodes the direction in which that particular point is
facing with respect to the camera.

• The encoding of the impostor detail image’s alpha channel
to allow variety.

Each pixel in the impostor detail image’s alpha channel is en-
coded with a specific alpha value associated with the material
ID of the material at that particular point.

• The combining of each impostor detail and normal map
image for a particular frame of animation into a single
image of 1024*1024 pixels.
This is done for ten keyframes in the case of the walk anima-
tion (as shown in Figure3).

3.1 Switching between Virtual Human LOD Repre-
sentations

The main aesthetic problem with using an impostor to represent a
virtual human is that, once the human is close to the viewpoint, the
impostor’s flat and pixellated appearance becomes quite obvious.
As stated in [Ulicny et al. 2004], this makes impostors a good ap-
proach for far-away humans that do not need detailed views. How-
ever, our main contribution is to allow a virtual human to switch to a
higher LOD representation, based on some selection criteria, which
should greatly improve the realism of the simulation. Our approach
is to switch between a virtual human’s impostor based representa-
tion and the mesh that was used to generate the impostor, based on
an impostor image pixel size to impostor texel size ratio.

Given the set of viewing parameters used in the generation of the
impostor images in 3D Studio MAX, we can compute the size of
an impostor image’s pixel as shown in Figure 4. In this figure, θ
is the camera’s field of view, dcam is the distance along the viewing
direction from the camera to the virtual human model, and x is the
resolution of the impostor image. Using these values, the size of an
impostor image’s pixel can be calculated using Equation (1).

Pixelsize =
tan−1(θ

2)×2×dcam

x
(1)

Figure 4: Calculating Impostor Image Pixel Size

A texel (TEXtured ELement) is the basic unit of measurement when
dealing with texture mapped 3-D objects. We propose that the
switch between the impostor and mesh representation of the human
model should happen when the ratio of the pixel size of the impos-
tor image to the texel size of the impostor’s texture mapped quad
equals a certain threshold. The ideal ratio at which the switching
should happen is at 1:1, as aliasing starts to occur when the texel
size is greater than the pixel size, resulting in the stretching of the
texture on the impostor’s quad. Given the set of viewing parameters
of the system and using the properties of similar triangles, the dis-
tance dswitch at which the pixel to texel ratio is equal to one, can be
calculated using Equations(2)(3). Note that θ is the camera’s field

97

of view, dnearplane is the distance along the viewing direction from
the camera to the near plane, and x is the resolution of the screen in
pixels.

TexelSIZE =
(2×dnearplane × tan−1(θ

2))

x
(2)

dswitch =
dnearplane ×Texelsize

Pixelsize
(3)

At run-time, if the virtual human is within the view-frustum and
the distance of the human from the viewer is less than dswitch, the
system switches from the impostor based representation to the mesh
representation. The appropriate frame of animation for the mesh is
selected based on the impostor’s current frame allowing a seamless
transition.

4 Real-Time Rendering of the Virtual Hu-
man

4.1 Rendering of the Geometric Representation

Depending on the impostor’s current frame of animation, the po-
sition and orientation of each bone is updated based on the corre-
sponding keyframe. Once the skeletal structure has been updated,
the positions of all the bones affecting each vertex are used to cal-
culate the final position of the mesh’s vertices. By pre-calculating
and storing each vertex position and normal transformation for each
frame of animation, we replace the complex, articulated skeletal
model with a simple rigid mesh or “pose”. This avoids the cost of
deforming the mesh, and allows the entire model to be stored rela-
tive to a single bone or matrix. To improve the rendering speed of
a pose, we minimise OpenGL state changes [Shreiner et al. 2004],
as well as encapsulating the pose’s data in a vertex buffer object
(VBO). Vertex buffer objects allow data to be stored in high perfor-
mance memory on the server side and therefore increase the rate of
data transfer.

To improve the variety of our models, we use a set of different hu-
man meshes and change their appearance by using different “out-
fits”. Outfits define a set of colours for the mesh’s skin and clothes,
where each colour is associated with a specific material ID. In
3D Studio MAX, the diffuse colour of each mesh’s materials is
set to white and each material is tagged with a specific ID to de-
fine whether it represents skin or a particular type of clothing (e.g.
trousers, shirt, or jacket). When the mesh is rendered in the sys-
tem, the diffuse colour of a material is changed depending on the
material’s ID and the colour associated with that ID, which is de-
fined by the outfit being used. In the case of a material that uses a
texture map, the texture is grey-scaled in 3D Studio MAX to allow
colour modulation without losing detail. Several different outfits
can be defined for each human model mesh allowing great variety
with minimal memory overhead.

4.2 Rendering of the Impostor Representation

The main problem with using a pre-generated impostor approach is
the consumption of texture memory. In order to render a dynami-
cally lit impostor, an impostor detail image and a normal map image
are required (for each frame of animation). Since the RGBA impos-
tor detail image contains four channels (1024*1024*4 bytes) and

the RGB normal map image contains three channels (1024*1024*3
bytes), this results in 7MB of texture memory being required. By
using DXT3 texture compression, the memory requirements are re-
duced by a factor of four for RGBA images and by a factor of
six for RGB images, resulting in only 1.5MB (1024*1024*4*1/4
+ 1024*1024*3*1/6 bytes) of texture memory for each frame.

Given the amount of texture memory required by the system, we
need a method to improve the variety and visual interest of large
crowds of impostors while keeping memory usage to a minimum
and ensuring that rendering speed is uncompromised. To improve
variety, changing the colours of an impostor’s clothing and skin is a
method that is simple and yet has high visual impact when viewed
in a crowd. While a multi-pass method as described in [Tecchia
et al. 2002b] achieves this goal, it does so by performing a ren-
dering pass for every different region of colour that needs to be
changed. For improving realism, interactive lighting of impostors
is highly desirable. In addition to aesthetic considerations, this is
essential for a system that allows the impostor to switch to a geo-
metric representation. By using a per-pixel dot product between
the light vector and a normal map image, Tecchia et al. compute
the final value of a pixel through multi-pass rendering and require a
minimum of five rendering passes. However, multi-pass rendering
can have a detrimental effect on rendering time, which limits both
the number of impostors that can be shaded in real-time as well as
the number of regions that can be changed when adding variety.

Our contribution in this area is that we improve upon existing im-
postor techniques for adding variety by taking advantage of recent
improvements in programmable graphics hardware to perform an
arbitrary number of colour changes in one pass. Since the colour-
ing regions are encoded in the alpha channel (as described in Sec-
tion 3), this number is limited only by that channel’s precision. Our
further contribution is the real-time shading of the impostors in a
single pass, implemented in programmable hardware.

Figure 5: Impostor Colouring Sequence

4.3 Real-Time Impostor Shading using Program-
mable Graphics Hardware

As we are presenting a hybrid system that switches between two
representations, it is crucial that there is no difference in the shading
of each representation for the interchange to be imperceptible to the
viewer. As the geometric representation is shaded using the fixed
function pipeline, the shading of the impostor in hardware needs
to match this. With respect to our system, we are using a single
directional light with materials that have no specular, emission or
shininess properties, resulting in the simplification of the OpenGL
lighting Equation (4).

98

Vertex Colour = AmbientLightModel ×Ambientmaterial +

MAX((Vectorlight �Normalvertex),0)

×Di f f uselight ×Di f f usematerial (4)

The lighting of the impostor representation has been implemented
in hardware using both texture shaders and register combiners [SGI
b], and vertex and fragment programs [SGI c] [SGI a], depending
on available hardware. This involves Equation (5), wherein the per-
pixel dot product of the light vector and the pre-generated normal
map is multiplied with the coloured region map (which will be dis-
cussed in the next section) to produce a “shaded coloured region
map”. This result is added to an ambient term, and multiplied with
the detail map to yield the final lit, coloured pixels. The overall
shading and colouring sequence is illustrated in Figure 5.

Pixel Colour = (AmbientLightModel ×Ambientmaterial +

MAX((Vectorlight �NormalMap),0)

×ColourMap ×Di f f uselight))

×ImpostorDetailMap (5)

4.4 Adding Variety with Programmable Graphics
Hardware

We exploit the programmability of graphics hardware to efficiently
increase the variety and interest of each impostor. In order to match
the virtual human’s geometric representation, the impostors must
also be able to change colour, depending on human model and out-
fit materials. We achieve this by storing distinct material IDs in
the alpha channel of the impostor detail image upon generation,
and use these IDs to address a changeable colour map at run-time.
While this would not be possible with the fixed function pipeline,
programmable texture addressing allows texture indirection to be
employed, meaning the output of one texture lookup can be used as
the texture coordinates of a subsequent lookup. Therefore we per-
form a lookup on the detail map, using the alpha-encoded material
IDs to address a colour map texture that can be altered to match
the outfit of the virtual human currently being rendered. The colour
maps used are one-dimensional textures with one pixel per colour,
meaning many different outfits can be stored with negligible mem-
ory usage. An added bonus is that the impostor colouring is con-
trolled entirely by artist-drawn textures, allowing a quick and easy
method of producing many different colour maps that are realistic
and suitable to the model being rendered (Figure 6).

5 Implementation of Crowd System in an
Urban Environment

To examine the real world performance and usability of our crowd
system we incorporate it into an existing virtual city simula-
tion [Hamill and O’Sullivan 2003]. This is a highly detailed model
of Dublin city centre, covering several square kilometres, imple-
mented as an OpenGL first person perspective application.

Performance of the crowd simulation in an urban setting can be
greatly increased due to the densely occluded nature of the envi-
ronment. We utilise view frustum culling as a first order step to
eliminate those humans not potentially on screen. We further make
use of hardware accelerated occlusion culling, with a grid based

Figure 6: Generating Colour Maps to Add Variety

method, to cull large sections of the crowd when the camera is near
ground level. We divide the world into a regular grid of human-
height nodes and store which humans are present in each node.
Having initially rendered the static environment, we perform oc-
clusion queries on the bounding volume of these nodes allowing us
to rapidly discard those nodes hidden by the environment, and thus
the humans within them.

While frustum and occlusion culling decrease the rendering work-
load, there are still overheads associated with updating the positions
of thousands of humans in motion. To lighten the workload we
pause the updating of humans that have not been visible for more
than five seconds. This time delay prevents temporal artefacts be-
coming noticeable amongst the nearby humans when performing
rapid camera rotation.

To avoid the need for complex collision detection algorithms but
still allow the virtual humans to navigate the city, we implement a
series of walkable area maps. These are primarily stored as 1bit
BMPs to allow low memory consumption and rapid lookup of the
binary walkable data, but additional modes are available allowing
height field information, potential field data, or colourisation data
to be stored.

Stencil buffer shadows are used in the city simulation to enhance
realism. Our shadow technique is shared by both the city sim-
ulation and the crowd. It operates by projecting the geometry /
impostor onto the ground plane, rendering into the stencil buffer.
A single semi-transparent quad is rendered over the whole scene
(where the stencil buffer has been set) resulting in realistic blended
shadows. While this method is similar to that employed by Loscos
et al. [Loscos et al. 2001], our use of the stencil buffer instead of
darkened textures allows shadows to blend realistically with the un-
derlying world and each other without blocking or z-buffer fighting.

5.1 Reducing Texture Thrashing in a Virtual City
Environment

In the case of populating a virtual city with crowds using impostors,
the number of human models that can be used is limited, otherwise
texture thrashing becomes a problem. In addition to each human
model requiring 1.5MB of texture memory for its impostor, the city
model will also require a certain amount of texture memory. There-
fore, as the number of types of human models increases, texture
thrashing will occur much sooner as a result of the extra texture
memory being consumed by the city model. It should be noted that

99

in the case of real-time applications where the camera is fixed, say
at eye-level, only 17 viewpoint images are needed for each frame
of animation, and therefore texture thrashing is less of a problem.
Since we wanted to implement a more generic system, where the
camera can view the city from any viewpoint, 17 by 8 viewpoints
are needed for the impostor.

However, as only a subset of the viewpoints in the textures is be-
ing used when rendering a frame, we propose splitting the impostor
detail and the normal map images into eight separate smaller “ele-
vation” images containing the set of viewpoints for each elevation.
An application was written to facilitate the creation of these ele-
vation images. The application reads in the 17 viewpoint images
for a particular elevation and, based on the sum of the viewpoint
images’ area, the minimum dimensions of the elevation image are
calculated. Once the viewpoints have been read in, the application
allows the user to organise the viewpoints within the new eleva-
tion image. Unfortunately, since the dimension of each viewpoint
image varies, it is not guaranteed that they will all fit within the
minimum dimensions and therefore these sometimes have to be in-
creased. Once the user has got all the viewpoint images to fit, the
new elevation image is exported as shown in Figure 7.

Figure 7: Normal Map Elevation Image

The number of elevation images needed to render impostors using
a particular human model type depends on the height of the camera
and the distance of the camera to each impostor. Since buildings
in a city environment generally occlude humans in the distance, all
elevation images should never be needed simultaneously. The angle
(θ E) between the impostor and the camera around the horizontal
axis, can be calculated using Equation (6), where hcam is the camera
height and dxz is the distance on the x-z plane from the camera to the
impostor. Using θ E , the elevation image needed for that impostor
can be calculated. From Equation (6), it can be noted that as camera
height decreases, the number of elevation images needed is reduced
dramatically.

θE = tan−1(
hcam

dxz
) (6)

Taking advantage of the occluding nature of city environments, this
method of separating impostor and normal map images for each el-
evation permits greater variety without texture thrashing as a result
of each human model type consuming less texture memory.

6 Performance of Run-Time System

We measured the performance of the crowd rendering system by
itself, and also within an urban simulation system to test its overall
impact. All of our tests were performed using a PentiumIV 2.0Ghz
processor, with 512Mb RAM and a GeForce 4 Ti4600 3D card with
128MB of video memory.

6.1 Performance of the Crowd Rendering System

We ran tests investigating how the number of virtual humans and the
representation used affected the frame rate. These tests used an im-
postor and a geometric representation (consisting of approximately
2200 triangles) for 1, 10, 100, 250, 500 and 1000 virtual humans as
shown in Figure 8. It should be noted that for each test, all of the
virtual humans were fully lit but never frustum or occlusion culled
and were therefore always on-screen.

Figure 8: Impostor Vs Geometry

We also tested how using our two LOD representations affected
the system’s performance in comparison to just using an impos-
tor representation. These tests were carried out for 1,000 - 10,000
virtual humans at 1,000 human intervals. A maximum of 10,000
virtual humans was chosen as this was considered to be the max-
imum amount that would be needed on-screen for scenes such as
an army of characters or a stadium of spectators. In these tests, the
number of virtual humans using the geometric representation was
set to 100 to keep their rendering cost constant thus allowing the
performance impact of using the impostors to be measured. Again,
for each test all of the virtual humans were on-screen and lit as
shown in Figure 9. The graph in Figure 10 illustrates that in the
impostor/geometry case, the impostor representation has a minimal
impact on the rendering time as the number of virtual humans in-
creases.

Figure 9: Frame Rate Tests for 10,000 Humans (9,900 Impostors
100 Geometry)

6.2 Performance in an Urban Simulation System

To provide a baseline, we recorded the frame rates during a 2000
frame walkthrough of the virtual city containing no humans. The
city application contains over 100,000 Polygons and uses over
200MB of texture data, and so provides a good real-world appli-
cation in which to test our crowds. We then added 5,000, 10,000,
20,000, and 30,000 virtual humans respectively to the environment
to see how the frame rates of each walkthrough were affected in
comparison to the baseline test. The selection criteria used for

100

Figure 10: Impostor Vs Impostor/Geometry

switching between representations was a pixel to texel ratio of 1:1.
It should be noted that in these experiments, the virtual humans
were both frustum and occlusion culled, and lighting was enabled.
As can be seen in Figure 11, interactive frame rates are maintained
for crowds of up to 30,000 individuals.

Figure 11: Walkthrough of Virtual City

Finally, to test the effect of splitting the impostor textures into sep-
arate elevation textures as opposed to using the original textures of
1024 by 1024 pixels, we recorded the frame rates during a 2000
frame walkthrough of the virtual city containing 10,000 individ-
uals. These tests were run with 4, 6, 8, and 10 different human
models for both types of textures. To avoid texture thrashing due
to the city’s models, the buildings were rendered without textures.
As shown in Figure 12, once the number of human models exceeds
four, texture thrashing becomes a problem when using the original
textures. However, up to ten human models can be used without
texture thrashing affecting the frame rate when the impostor tex-
tures are split into separate elevation textures as shown in Figure 13.

7 Conclusions and Future Work

We have presented a hybrid system for the real-time rendering of
large-scale animated crowds. This system implements a LOD ap-
proach by using an image based representation for virtual humans
in the distance, and switching to a geometric representation once
the human is within a certain distance threshold based on a texel

Figure 12: Frame Rates Using 1024x1024 Textures

Figure 13: Frame Rates Using Elevation Textures

to pixel ratio. The shading of the impostors and the introduction
of variety into the virtual human’s geometric and impostor model
is achieved at run-time through programmable graphics hardware.
We have shown that our system allows large crowds to be animated
at interactive frame rates.

Our results so far have convinced us that human impostors are a
excellent substitute for geometry, not only because of proven ren-
dering efficiency gains, but also in terms of visual fidelity. At cer-
tain distances, it is virtually impossible to determine whether the
high-resolution model or the impostor is being rendered. The vi-
sual realism of our impostor representations is one of the clear ad-
vantages this method has over other approaches, such as using low
polygon models. Up to now, we have used a texel to pixel ratio
of 1:1 to decide when to switch virtual human representations, but
from our observations it is clear that this is a conservative estimate.
For example, when a single virtual human is rendered against a high
constrast background, the interchanges are more easily detected and
the 1:1 ratio is a reasonable estimate of the perceptible threshold.
However, when the same human is placed within the complex ur-
ban environment, with many background details, it becomes almost
impossible to notice the change until the model is very close to
the camera. These informal observations now need to be evaluated
empirically and we are currently running a set of perceptual ex-
periments to find appropriate thresholds and to evaluate the factors
affecting the perception of human models and their motions for a
range of representation schemes.

This paper mainly focussed on rendering techniques for large ani-
mated crowds. The current behaviour of the virtual crowds is fairly
simplistic and the impostors are limited to the motion that was used

101

in their generation. With our crowd rendering system in place, we
plan to extend our work into implementing a scalable system that
provides our virtual humans with more believable behaviours using
a variety of motions. By implementing matrix palette skinning us-
ing programmable hardware, this would allow subtle but important
variations in the motions used to animate the geometric models with
minimum overhead. For example, this could be used to animate a
human looking around carefully before crossing a road.

Futhermore, the splitting of the human impostor into separate body
parts (such as the head, the arms, the legs, and the torso), would
allow the mixing of different pre-generated impostor animations.
For example, different arm or head gestures could be used depend-
ing on the virtual human’s behaviour. With the latest generation
of graphics cards having 256Mb of RAM and the imminent spread
of PCI-Express which greatly increases bus bandwidth, the current
issue of texture thrashing will become less of a problem.

To improve on the behaviour, Level of detail AI (LODAI) tech-
niques will be investigated. LODAI reduces the high CPU demands
of AI by approximating the behaviour of agents who are rated with
a low-level of importance. A LODAI approach could be used to
determine whether a virtual human exploits areas such as pathfind-
ing level of detail, pathfinding cheating, AI update frequency and
collision avoidance.

References

AUBEL, A., BOULIC, R., AND THALMANN, D. 2000. Real-time
display of virtual humans: Levels of details and impostors. IEEE
Transactions on Circuits and Systems for Video Technology 10,
2, 207–217.

BROGAN, D., AND HODGINS, J. 2002. Simulation level of detail
for multiagent control. In International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), 199–206.

DE HERAS CIECHOMSKI, P., ULICNY, B., CETRE, R., AND
THALMANN, D. 2004. A case study of a virtual audience
in a reconstruction of an ancient roman odeon in aphrodisias.
The 5th International Symposium on Virtual Reality, Archaeol-
ogy and Cultural Heirtage (VAST).

HAMILL, J., AND O’SULLIVAN, C. 2003. Virtual dublin - a frame-
work for real-time urban simulation. Proc. of the Winter Confer-
ence on Computer Graphics 11, 1-3.

LOSCOS, C., TECCHIA, F., AND CHRYSANTHOU, Y. 2001. Real-
time shadows for animated crowds in virtual cities. Proceedings
of the ACM symposium on Virtual reality software and technol-
ogy, 85–92.

LUEBKE, D., WATSON, B., COHEN, J., REDDY, M., AND
VARSHNEY, A. 2002. Level of detail for 3d computer graph-
ics. Elsevier Science Inc.

MUSSE, S. R., AND THALMANN, D. 2001. A hierarchical model
for real time simulation of virtual human crowds. IEEE Transac-
tions on Visualization and Computer Graphics 7, 2 (April-June),
152–164.

O’SULLIVAN, C., CASSELL, J., VILHJÁLMSSON, H.,
DINGLIANA, J., DOBBYN, S., MCNAMEE, B., PETERS,
C., AND GIANG, T. 2002. Levels of detail for crowds and
groups. Computer Graphics Forum 21, 4.

SGI. Nv fragment programs. http://oss.sgi.com/projects/ogl-
sample/registry/ARB/fragment program.txt.

SGI. Nv register combiners. http://oss.sgi.com/projects/ogl-
sample/registry/NV/register combiners.txt.

SGI. Nv vertex programs. http://oss.sgi.com/projects/ogl-
sample/registry/ARB/vertex program.txt.

SHREINER, D., KUEHNE, B., TRUE, T., AND GRANTHAM, B.
2004. Performance opengl: Platform-independent techniques.
In SIGGRAPH ’04 Course.

TECCHIA, F., AND CHRYSANTHOU, Y. 2000. Real-time rendering
of densely populated urban environments. Proceedings of the
Eurographics Workshop (JUNE), 83–88.

TECCHIA, F., LOSCOS, C., AND CHRYSANTHOU, Y. 2002. Image
based crowd rendering. IEEE Computer Graphics and Applica-
tions 22 (March/April).

TECCHIA, F., LOSCOS, C., AND CHRYSANTHOU, Y. 2002. Vi-
sualizing crowds in real-time. Computer Graphics Forum 21
(December).

ULICNY, B., AND THALMANN, D. 2001. Crowd simulation for in-
teractive virtual environments and vr training systems. Proceed-
ings of Eurographics Workshop on Computer Animation and
Simulation 2001, 163–170.

ULICNY, B., DE HERAS CIECHOMSKI, P., AND THALMANN, D.
2004. Crowdbrush: Interactive authoring of real-time crowd
scenes. Proceedings of ACM SIGGRAPH Symposium on Com-
puter Animation (August).

102

Figure 14: Geopostor Crowds in Virtual Dublin

222

