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- Who this is aimed at

- Game programming students who don’t necessarily come from a strict
computer science background

- Some points might be basic for CS students, but all are important
- All points could be talked about much more

- Use as a starting point for further reading — see references at end of deck



OUERUIEW

Know your target architecture
Understand multithreading
Optimize effectively

Performance isn’t (just) about the machine

Easy to lose sight of perf
High-level goals
Time pressures
Designitis

"I'll fix it later" doesn’t happen as often as you’d like



Know your tarie
architecture!l

One takeaway from this talk!

You can’t get (closer to) optimal performance unless you know what’s going on at a
low level



KNOW YOUR THRGET ARCHITECTURE!

» Memory

» Cachel!

» CPU

» GPU
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MEMORY

» Data fetch speed

can be a bottleneck
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Memory speed lags behind CPU speed

Obligatory Moore’s-Law-vs-memory image



CACHING Memory Caching

RAM fetch — slow | 200+ CYCLES

One fetch is likely to be | 20+

followed by another from |  CYCLES

the same memory area MAIN RAM

” L2 (large)

| (small)
Organized in cache lines m |
»  Section of memory cached _ :\
»  Usually 64b or 128b w v 3
CYCLES

Multi-level cache
» Note I$ - instructions

[Dogged Determination - Jason Gregory]

Note instruction cache — usually not as much of a focus as data cache, but still worth
considering.

Good advice from Jason Gregory:
Keep high-performance code small

Keep high-performance data small and contiguous



CACHE LINES

char* ptr = OXCA;
e 4 char b = *ptr;
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CACHE LINES

char* ptr = OXCA;
e 4 char b = *ptr;

ey | W | | |
peaew | | [ | [ | | |
s [ | | [ [ [ ||

Pointer dereference



CACHE LINES

char* ptr = OXCA;
e 4 char b = *ptr;

ey | W | | |
peaew | | [ | [ | | |
s [ | | [ [ [ ||

Cache miss!

Results in expensive fetch from main memory

10



CACHE LINES

char* ptr = OXCA;

e 4 char b = *ptr;

0xco. | A I A
peaew | | [ | [ | | ]
s [ | | [ [ [ ||

Whole cache line (8b in this case) worth of memory fetched and cached
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CACHE LINES

char* ptr = OXCA;

char b = *ptr;
p
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Value returned
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CACHE LINES
CPU
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Adjacent memory location is fetched
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CACHE LINES
CPU
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Cache hit!
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IMPLICATIONS

Ol

int GridSum(int* arr, int width, int height)

{

}

int sum = 0O;

for(int x = 0; x < width; x++]

{
for(int y = O0; y < height; y++]
{

sum += arr[x + [y * width]];
}
}

return sum;

Implication: think about how you access data

Canonical example: 2D array sum

Contrived, but not that far from real-world scenarios
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IMPLICATIONS

Ol

int GridSum(int* arr, int width, int height)

{

}

int sum = 0O;

for(int x = 0; x < width; x++]

{
for(int y = O0; y < height; y++]
{

sum += arr[x + [y * width]];
}
}

return sum;

First iteration — cache miss

16



-

IMPLICATIONS

int GridSum(int* arr, int width, int height)

{

}

int sum = 0O;

for(int x = 0; x < width; x++]

{
for(int y = O0; y < height; y++]
{

sum += arr[x + [y * width]];
}
}

return sum;

Second iteration — cache miss!
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IMPLICATIONS

NinK about Nnow you

int GridSum(int* arr, int width, int height)
{

int sum = 0O;

farlintsx 0; x < width; x++]
{
for(int y = O0; y < height; y++]
{
sum += arr[x + [y * width]];
i
}

return sum;

}

...and again...
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int GridSum(int* arr, int width, int height)

{

}

int sum = 0O;

for(int x = 0; x < width; x++]
{
for(int y = O0; y < height; y++]
{
sum += arr[x + [y * width]];
i
}

return sum;

...and so on.

If the data is large vs. cache size, you may completely fill the cache before ending the
first loop - 0% cache utilization!

Performance will be dominated by memory fetch speed — slow.
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IMPLICATIONS

Ol

int GridSum(int* arr, int width, int height)

{

}

int sum = 0O;

for(int x = 0; x < width; x++]

{
for(int y = O0; y < height; y++]
{

sum += arr[x + [y * width]];
}
}

return sum;

Simple improvement...
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IMPLICATIONS

Ol

int GridSum(int* arr, int width, int height)

{

int sum = 0O;

for[int y = 0; y < height; y++]

{

for(int X = 0; %x < width; x++]

{

sum += arr[x + [y * width]];
}
}

return sum;

}

Switch inner loops!
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IMPLICATIONS

Ol

int GridSum(int* arr, int width, int height)

{

int sum = 0O;

for(int y 0; y < height; y++)
{
for(int x = 0; x < width; x++]
{
sum += arr[x + [y * width]];
i
}

return sum;

}

Now one cache miss...
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IMPLICATIONS

Ol

int GridSum(int* arr, int width, int height)

{

int sum = 0O;

for(int y 0; y < height; y++)
{
for(int x = 0; x < width; x++]
{

sum += arr[x + [y * width]];
}
}

return sum;

}

...followed by multiple cache hits.
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IMPLICATIONS

Ol

int GridSum(int* arr, int width, int height)

{

int sum = 0O;

for(int y 0; y < height; y++)
{
for(int x = 0; x < width; x++]
{

sum += arr[x + [y * width]];
}
}

return sum;

}

...followed by multiple cache hits.
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IMPLICATIONS
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int GridSum(int* arr, int width, int height)

{

int sum = 0O;

for(int y 0; y < height; y++)
{
for(int x = 0; x < width; x++]
{

sum += arr[x + [y * width]];
}
}

return sum;

}

...followed by multiple cache hits.
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IMPLICATIONS

Ol

int GridSum(int* arr, int width, int height)

{

int sum = 0O;

for(int y 0; y < height; y++)
{
for(int x = 0; x < width; x++]

{

sum += arr[x + [y * width]];
}
}

return sum;

}

Win!
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CAUEART

Prefetching hardware may optimize predictable memory access patterns
Out-of-order CPUs can hide memory fetch latency by reordering instructions

Never rely on hardware optimizing bad behaviour!

Only you understand the big picture, and control both code and data - give the
compiler & hardware as much help as possible to do the right thing
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DATA ORIENTED DESIGN

I laLa

Memory interactions can dominate performance

Shape program structure around data flow
» Instead of ‘logical’ object hierarchy

Vs. object-oriented design
» Room for both, but layers of abstraction can isolate programmer from data

Coherent data layout makes processing easier
» Easier to parallelize code
» Less branchy code

More generally... Data Oriented Design
Realities of memory fetch speeds necessitate a change in thinking

Think about your data and access patterns, not necessarily the ‘logical’ structure of
objects & hierarchies
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DATA ORIENTED DESIGN

class Particle

{ class ParticleSystem
Vector3d position; {

Vector4 colour; " Tk ;
Vector2 uv: Vector3™ positions;

float age; . Vector4* colours;
Vector2* uvs;
} float* ages;

class ParticleSystem

{

Particle* particles;

}

Simple example: particle systems

Naive OO design says the action happens per-particle, so a particle should be an
object

But when do we ever work with just a single particle? Consider...
Per-frame updates (position etc.)
Building vertex buffers
Processing dead particles

This is AoS vs. SOA — Arrays of Structures vs Structures of Arrays

Much more to be said about DoD — see references at end (Mike Acton, Tony Albrecht)
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MEMORY MATTERS

Size matters
» Memory is a precious commodity, even on modern machines
Usage matters

» Allocation cost
» Knowing your data leads to better allocator types: linear, pool etc.
» Multithreaded allocator contention
» Fragmentation
Layout matters
» Cache pollution
» False sharing
Example: array vs. linked list

Overall: memory is an important factor, and always needs to be considered.

Easy to ignore memory if learning gamedev on PC — you’re in for a rude awakening.

Fragmentation: small heap allocations of varying lifetimes leads to a ‘swiss cheese’
effect, where there is a lot of free memory available, but in individual chunks too
small to be useful.

Cache pollution: pulling unnecessary/unused data into cache, possibly evicting other
useful data that then needs to be refetched from memory. Group commonly-used
data together in structures, and consider splitting large structures into smaller
cacheline-sized structures based on usage.

False sharing: in a multi-processor system, accessing adjacent data form different
threads can cause that data to be refetched from memory every time unnecessarily,
because both pieces of data would be stored in the same cacheline and so flushed
whenever any changes are made by another processor.

All important when deciding on storage structures. Eg: array vs. linked list — very
different allocation, access, and cache usage patterns.
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CPU
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CPU PERFORMANCE

The best optimization: do less work!
High-level optimizations should always come before low-level
» Much bigger potential gains
» Cull more, process less
Understand algorithm complexity (“Big O notation”)
Know the comparative strengths of various algorithms
» Searching
» Sorting

See bigocheatsheet.com
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CPU PERFORMANCE

» Understand how instructions are processed
» In-order vs Out-of-order

» Understand program flow
» Function calling, branching

» Understand the instructions themselves

To optimize for the CPU, you need to understand what it’s doing in the first place.

In-order processors subject to LHS (Load-Hit-Store), where a piece of data is written
to memory and then immediately read back, causing a stall.

Out-of-order can process other independent instructions while waiting for data,
possibly hiding the stall with other work. But also less predictable.

Functions: prologue/epilogue overhead; inlining. Virtual function vtable indirection
cost.

Branches: prediction hardware ranges in quality, so branches can have varying costs.
Potential processor pipeline flush - plan accordingly.
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UNDERSTANDING ASM

Understanding performance
» Compilers are complex — might not do what you expect

General understanding of the machine

Debugging crashes without symbols
Or when debugger can’t find variables
Or recognizing memory corruption
Or investigating stack corruption
Or...

Aside: understanding assembly is essential for understanding performance, but it’s
even more important than that

ASM instructions are the building blocks of all the code you write. Every coder should
be able to at least read & follow them.

Don’t just leave the understanding to “the low-level engine coders”.
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ANARTOMY OF A PROGRAM

»

When confronted with this in the
debugger, do you...

» A)Ask QA to repro it in Debug?

» B)Add some debug code and
hope it happens again?

» C) Open the Registers & Watch
windows, and dig in...

Especially towards the end of production, you’ll inevitably encounter rare,
unreproducible crashes

One crash in 1000 hours of gameplay sounds rare? 2m copies, 10 hours each... 20,000
crashes!

You have to work with what you have, when you have it.

All the information is there, you just have to know how to find it.
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ANARTOMY OF A PROGRAM

» Application Binary Interface
» Data types, register usage, function parameter handling

» Calling convention
» How function calls are handled
» Register handling - volatile/non-volatile registers

» X64 hardware registers
» RIP, RAX, RBX, RCX, RDX, RSI, RDI, RBP, RSP
» R8..R15
» XMMO ... XMM15

Volatile registers: contents may be overwritten inside a function call

Non-volatile registers: values must be saved and restored after a function call

Function prologue/epilogue: reserve stack space, save & restore non-volatile
registers, etc.



ANARTOMY OF A PROGRAM

» Example: Windows x64 convention
» RSP: stack pointer
» First 4 function parameters in registers

» Ints/pointers: RCX, RDX, R8, R9
» Floats: XMMO, XMM1, XMM2, XMM3
» The rest on the stack
» RCX: ‘this’ pointer (non-static member functions)
» implicit first function parameter
» RAX/XMMO: return value/address

Some basics of x64 hardware register usage and the Windows x64 calling convention
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With these few guides,

this simple function example becomes a lot clearer...
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foo.bar(x);

11973 mo\

CObject foo;

iea

foo.bar(x);

lea

Some coders have an irrational fear of assembly. It’s actually very straightforward!
Understanding is liberating.

Spend a few hours studying the details and exploring your own programs in the
debugger, it will pay off many times over.

See Elan Ruskin’s excellent GDC talk (see references) for more.
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SIMD

» Single Instruction Multiple Data
» More bang for your buck!
» Scalar code almost criminally under-utilizes available CPU power
Some restrictions
» Data alignment, hardware-specific instruction support
» General recommendation: use intrinsics for ease of use
Takes some care to implement properly
» Best used in performance-sensitive code

Can’t talk about CPU performance without mentioning SIMD

A single instruction can perform the same operation on 4 (or more) pieces of data —
perfect for the vector operations common in game code

Intrinsics — compiler-specific wrapper around one or more SIMD instructions.
Compiler can generally schedule more efficiently given intrinsics rather than bare
intructions, and they are easier to write than inline assembly.

Low-level nature and extra restrictions means more effort required to SIMD-ize code,
so only use where suitable

DoD approach fully applies, and code written with DoD in mind can be more easily
converted to SIMD
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GPU

GPU performance is its own massive subject, will only touch on some high-level
concerns here
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3D
Application

CPU & GPU are major or Game
system components 25 )

Commands

3D APL:
OpenGL

or Direct3D |
CPU - GPU Boundary

Closely coupled — stalling
one can stall the other GPU I

Command &

Data Stream Assembled Pixel

Polygons, Lines Location Pixel
Updates

Stream & Points Stream
5 GPU imitive R ization & Raster
Interface through driver Front e..al Assembly| etotentl MJ | Roster | o Bt
Programmable

» Thin or thick
Pretransformed Transformed Rasterized
Vertices L Vertices Pretransformed
Fragments
Programmable
Fragment
Processor

Transformed
Fragments

Vertex Processor|




DRIVER LAYER

GPU work submitted by CPU to driver through API
Driver produces command buffer(s)
» State changes, shader parameters, buffer setting, etc
» Generally implemented as ring buffer
GPU consumes command buffer
» Empty command buffer = idle GPU
CPU cost of building, managing & validating command buffers can be prohibitive
» Imposes limits on number of draw calls per frame
» Work in progress to reduce this — Mantle, DX12
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GPU PIPELINE =

Series of stages, from set of vertices to visible pixels
Stage

Massive internal parallelism — many items processed P

in parallel (' P— )

Stage

Bottleneck in one stage limits speed of entire I |

3 . " Geometry Shader
pipeline ( -}

Many similarities to CPU performance concerns .
Stage

| E—"

» Cache utilization L

» Instruction count

<

Determine bottleneck by eliminating possibilities =

Stage

» And/or with tools — RenderDoc, Nsight, PIX etc. I

Output-Merger
Stage

Eg. Reduce pixel shader instructions — no change in frame time means the bottleneck
is elsewhere



POTENTIAL BOTTLENECKS

» Shader complexity
» Most common bottleneck

» Geometric complexity

» Fillrate

» Texture sampling

» Render target bandwidth

Shader complexity

Different instructions can have different cycle costs — know your architecture! See
Emil Persson talks in references.

Geometry complexity

Transform cache — use indexed meshes, reorder for best cache usage (see Tom
Forsyth link in references)

Triangle/pixel ratio — use LODs
Fillrate
Overdraw — Use depth buffering, early/hierarchical Z
Esp. problematic with blending
Texture sampling
Cache use - use mipmapping
Filtering cost — use mipmapping, simpler filtering
Render target bandwidth
MRTs, bit depth
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Multithreading

Another large topic, we’ll just touch briefly on a few things to be aware of.
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PARALLEL PROCESSING

» Modern processors have multiple cores
» We need to use all available processing power

Not always easy to effectively multithread game systems
» Many dependencies
» Leads to lots of thread interaction
Main concern: thread safety
» Solid design is essential
» Threading bugs notoriously hard to track down
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SYNCHRONIZHTION

)N

» Any thread can be interrupted at any time

» Must exert careful control access to shared resources
» Atomic operations
» Locks (mutex, semaphore etc.)

» Beware contention

» Can turn a parallel system into a serial one

» Reduced by making lock more fine-grained, locking less data, overall system

design
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MULTITHRERDING PITFRLLS

Race conditions
Priority inversion
Deadlocks

ABA problem

Main pitfall: complexity
» Debugging — rare timing-based bugs are hard to track
» Design — subtle mistakes in synchronization logic are easy to make

Just some of the many potential pitfalls

The more complicated/intricate your multithreading setup, the more likely it is to
contain subtle insidious bugs

Race condition: Variable results based on order of thread execution

Priority Inversion: Low-priority thread holds lock on resource that high-priority thread
needs

Deadlock: Two threads are blocked waiting for locks that the other thread holds

ABA problem: Value changed then changed back to original, but another thread
thinks nothing has changed

49



Optimize effeglively
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PROFILE, OPTIMICE

Simple procedure:
Profile
Determine the bottleneck
Optimize
Repeat

Always profile before & after — don’t assume an optimization is effective

Consider amount of work vs. potential gain vs. increased complexity

Seems like an obvious point, but it’s easy to mistakenly assume you know where the
bottleneck is

Profile before & after — don’t assume that your optimization is a good one

If possible, keep both versions of code functional - makes for much easier profiling.

51



Other considerations
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IT'S NOT (JUST) ABOUT THE MACHINE

» Time is your most precious resource
» Never enough, prioritize & pick your battles

» Performance is also about the team
» Always consider iteration time
» Comment your code!
» Consider debuggability
» Catch errors as early as possible — deal with the source, not the result
» KISS!

Iteration time is massively important — if a change is going to increase build/export
time, slow down artists, or have other negative team-wide impact, weight it up
*very* carefully.

Comment your code — not only for your fellow coders, but also for yourself in six
months’ time

Debuggability — a piece of code may be awesomely vectorized, streamlined, tightly
packed and memory efficient, but if something goes wrong how hard is it going to be
to pick apart?

Catch errors early — if data can be exported incorrectly, deal with that at export time.
Dealing with bad data at load time is much messier, and will lead to errors not being
dealt with and piling up.

53



References

54



Dogged Determination: Technology and Process at Naughty Dog Inc. - Jason Gregory
»

»

Code Clinic: How to Write Code the Compiler can Actually Optimize — Mike Acton

»

Pitfalls of Object Oriented Programming — Tony Albrecht

»

Alternatives to malloc and new — Steven Tovey

»

Dogged Determination: Technology and Process at Naughty Dog Inc. - Jason Gregory

http://www.gameenginebook.com/resources/SINFO.pdf

https://www.youtube.com/watch?v=f8XdvIO8JxE

Code Clinic: How to Write Code the Compiler can Actually Optimize — Mike Acton

https://raw.githubusercontent.com/macton/presentation-
archive/master/gdcl14 code clinic.pptx

Pitfalls of Object Oriented Programming — Tony Albrecht

http://research.scee.net/files/presentations/gcapaustralia09/Pitfalls of Obje
ct Oriented Programming GCAP 09.pdf

Alternatives to malloc and new — Steven Tovey
http://www.altdev.co/2011/02/12/alternatives-to-malloc-and-new/
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C/C++ Low Level Curriculum — Alex Darby

»

x64 ABI: Intro to the Windows x64 Calling Convention — Rich Skorski

»

Crash Analysis and Forensic Debugging — Elan Ruskin

»

Low-level shader optimization (DX9 & DX11) — Emil Persson
»

»

C/C++ Low Level Curriculum — Alex Darby
http://www.altdev.co/?s=Low+Level+Curriculum

x64 ABI: Intro to the Windows x64 Calling Convention — Rich Skorski
http://www.altdev.co/2012/05/24/x64-abi-intro-to-the-windows-x64-calling-convention/

Crash Analysis and Forensic Debugging — Elan Ruskin
http://assemblyrequired.crashworks.org/gdc-2011-crash-analysis-and-forensic-debugging/

Low-level shader optimization (DX9 & DX11) — Emil Persson
http://www.humus.name/index.php?page=Articles&ID=6
http://www.humus.name/index.php?page=Articles&ID=9
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