
K e i t h  O ’ C O n O r 

One hallmark of the PrototyPe universe is over-the-top open-world mayhem. We rely heavily on large amounts of 
particle effects to create chaos, filling the environment with fire, blood, explosions, and weapon impact effects. 
Sgt. James Heller (the main character) can go just about anywhere in the environment. He can run up the side of 
a building, glide across rooftops, or even fly across the city in a hijacked helicopter. Because of this we need an 
effects system that scales to support the hundreds of complex effects and thousands of particles that could be 
visible at any one time. Here’s how we built upon the effects system developed at Radical for Scarface and Hulk: 
ultimate DeStruction by improving and adding features that would allow us to push the effects to the level we 
needed for PrototyPe and PrototyPe 2.

www.gdmag.com 15



game developer   |   april 2012 16

Simulating and authoring 
particleS

/// Our particle systems are composed entirely of a 
component-based feature set. A feature describes 
a single aspect of how each particle behaves 
—like changing position according to gravity or 
some other force, spinning around a pivot point, 
animating UVs, changing size over time, and 
so on. The effects artist can choose any set of 
features to make a particular particle system, and 
each chosen feature exposes a set of associated 
attributes (such as velocity, weight or color) that 
she can tweak and animate. This is all done in 
Maya with the standard set of animation tools, 
using the same simulation code as the runtime 
compiled into a Maya plug-in to make sure Maya 
and the game both behave consistently.

Once the artist is satisfied with the look 
and behavior of a particle system in Maya, it is 
exported as an effect that can be loaded in the 
game. This effect is then scripted for gameplay 
using our in-game editor, “The Gym," a complex 
state machine editor that allows designers to 
control every aspect of the game (see our GDC 
2006 presentation for more details, Reference 1). 
When scripting an effect to play in a particular 
situation, the effects artist has access to an 
additional set of controls: biases and overrides. 
For each attribute that was added as part of a 

feature, the effects artist can choose to bias 
(multiply) the animated value, or to override it 
completely. This allows a single loaded effect to 
be used in a variety of situations. For example, 
the artist can take a standard smoke effect and 
make small, light, fast-moving smoke or large, 
dense, black hanging smoke, just by biasing and 
overriding attributes such as emission rate, color, 
and velocity (see Figure 1 for an example).

Artists can use The Gym to tailor each 
instance of that effect to match its use in-game 
instead of authoring and loading many similar 
versions of the same effect or using an identical 
generic effect in multiple situations. This 
reduces memory usage and improves the artist’s 
workflow, allowing them to tune the effects 
live with in-game lighting and animations. The 
biases and overrides are also a major part of our 
continuous level-of-detail system, which we’ll 
describe later in this article.

Each particle system’s attributes are stored 
as separate tightly packed arrays, such as the 
positions of every particle, then the lifetimes, 
then the velocities, and so on. This data-oriented 
design ensures that the data is accessed in a 
cache-efficient manner when it comes to updating 
the simulation state every frame, which has a 
huge impact on CPU performance when doing 
particle simulation. This way, we take up only a 
small percentage of the CPU’s time to simulate 

thousands of particles with complex behaviors. It 
also makes implementing an asynchronous SPU 
on PS3 relatively straightforward, as updating 
each feature means only the necessary attribute 
arrays for that feature need to be DMA-ed up, 
without any extraneous data.

Having the particles’ positions separated 
has other performance benefits as well, such as 
allowing for fast, cache-efficient camera-relative 
sorting for correct alpha blended rendering. It 
also enables other features, such as particles that 
emit other particles by using the position output 
attribute array of the simulation update as an input 
to another system’s particle generation process.

reducing memory uSage 
and fragmentation

/// Having many short-lived particle effects 
going off all the time (during intense combat 
situations, for example) can start to fragment 
your available memory. Fragmentation happens 
when many small pieces of memory are allocated 
and freed in essentially random order, leading to 
a “Swiss cheese” effect that limits the amount 
of contiguous free memory. In other words, the 
total amount of free memory in the heap might be 
enough for an effect, but that memory could be 
scattered around the heap in chunks that are too 
small to be actually usable. (For an introduction 



www.gdmag.com 17

to fragmentation and memory allocators, check 
out Steven Tovey’s great #AltDevBlogADay 
article, Reference 2). Even though we use 
a separate heap for particle allocations to localize 
fragmentation, it is still a problem. Fortunately, 
we have a few tricks to limit fragmentation—and 
handle it when it becomes an issue.

Whenever possible, we use static segmented 
memory pools (allocated at start-up) to avoid 
both fragmentation and the cost of dynamic 
allocations. The segments are sized to match the 
structures most commonly used during particle 
system allocations. Only once these pools are full 
is it necessary to perform dynamic allocations, 
which can happen during particularly heavy 
combat moments or other situations where many 
particle effects are being played at once.

Our effects system makes multiple memory 
allocations when a single particle system is 
being created. If any of these fail (because 
of fragmentation, or because the heap is just 
full), it means the effect cannot be created. 
Instead of half-creating the effect and trying 
to free any allocations already made (possibly 
fragmenting the heap further), we perform a 
single large allocation out of the effects heap. If 
this succeeds, we go ahead and use that memory 
for all the allocations. If it fails, we don’t even 
attempt to initialize the effect, and it simply 
doesn’t get played. This is obviously undesirable 
from the player’s point of view, since an exploding 
car looks really strange when no explosion 
effect is played, so this is a last resort. Instead, 
we try to ensure that the heap never gets full or 
excessively fragmented in the first place.

Toward this end, one thing we do is partition 
the effect into “stores,” based loosely on the class 
of effect. We have stores for explosions, ambient 
effects, bullet squibs, and a number of other 
effect types. By segregating effects like this, we 
can limit the number of effects of a particular type 
that are in existence at any one time. This way, 
our effects heap doesn’t fill up with hundreds of 
blood-spatter effects, for example, thus denying 
memory to any other type of effect. The stores 
are structured as queues; when a store is full and 
a new effect is played, the oldest effect in that 
store gets evicted and moved to the “graveyard” 
store (where old effects go to die). Their emission 
rate is set to zero so no new particles can be 
emitted, and they are given a certain amount of 
time (typically only a few seconds) to fade out 
and die, whereupon they are deleted.

Having effects partitioned into stores also allows 
us to perform other optimizations based on the type 
of effect. For example, we can assume that any 
effect placed in the “squib” store is a small, short-
lived effect like sparks or a puff of smoke. Therefore, 
when one of these effects is played at a position that 
isn’t in the camera frustum, or is further away than 
a certain distance, we simply don’t play the effect 
at all, and nobody even notices. Another example is 
fading away particles from effects in the “explosion” 
store when they get too close to the camera, as they 
will likely block the view of the action, and also be 

very costly to render. When the player is surrounded 
by legions of enemy soldiers, tanks, and helicopters 
all trying to get a piece of him, these optimizations 
can lead to significant savings.

We also cut our memory usage by instancing 
effects. In our open-world setting, the same 
effect is often played in multiple places—steam 
from manhole covers and smoke from burning 
buildings, for example. In these cases, we only 
allocate and simulate one individual “parent” 
effect, and we then place a “clone” of this parent 
wherever that effect is played. Since only the 
parent needs to generate and simulate particles, 
and each clone only needs a small amount of 
bookkeeping data, we can populate the world with 
a large number of clones with a negligible impact 
on memory and CPU usage. To combat visual 
repetition, each clone can be rotated or tinted to 
make it look slightly different. 

managing vertex buffer 
memory demandS

/// Each particle system (cloned or not) needs 
memory to store its vertex buffers in addition 
to the memory required for simulation. As the 
number of particles in a system can change 
every frame due to new par ticles being 
generated or old ones dying, the amount of 
memory required for its vertex buffer varies 
similarly. While we could simply allocate enough 
space to store the maximum possible number 
of vertices when the system is created, that 
would be wasteful if only a few particles are 
emitted for the majority of the effect’s duration. 

Alternately, we could instead just perform per-
frame allocation in the effects heap, but creating 
and destroying these buffers every frame adds 
churn, increases the possibility of memory 
fragmentation, and demands more processing 
overhead for doing many dynamic allocations.

We instead use a dynamic vertex buffer heap, 
out of which we allocate all vertex buffers that 
are only needed for a single frame. Because the 
particle vertices are built on the fly every frame 
and don’t need to be persistent (besides being 
double-buffered for the GPU), we can use a simple 
linear allocator. This is an allocator that is cleared 
every frame, and every allocation is simply 
placed at the beginning of free memory. This 
has a number of advantages; fragmentation is 
completely eliminated, performing an allocation 
is reduced to simple atomic pointer arithmetic, 
and memory never needs to be freed—the “free 
memory” pointer is just reset to point at the 
beginning of the heap at each frame.

In addition, this heap doesn’t have to be limited 
to the particle systems’ buffers. It is used by 
any code that builds vertex buffers every frame, 
including skins, motion trails, light reflection 
cards, and so forth. With this large central heap, we 
only ever pay for the memory of objects that are 
actually being rendered, as any dynamic objects 
that fail the visibility test don’t need any memory 
for that frame. If we allocate memory for each 
object from when it’s created until it’s destroyed 
(even if you rarely actually see the object), we 
use far more memory than we do by consolidating 
vertex buffer allocations like this.

fine-tuning rendering 
performance

/// It’s easy for effects to get out of control in 
PrototyPe 2’s game world. Explosions, smoke, 
blood sprays, fires, and squibs all go off regularly, 

often all the same time. When this happens, the 
large amount of pixels being blended into the 
frame buffer slows the frame rate to a crawl. 
So we had to dedicate a significant amount of 
our effects tech to identifying and addressing 
performance issues.

the original effect (left) and three 
variations scripted with different biases 
and overrides

figure 1



We decided to place this burden on the effects 
artists. This is partly because they are the ones 
who create the effects and therefore know all the 
art and gameplay requirements. But we also do 
this to deliberately make them responsible for 
effects-related frame rate issues. Otherwise, we 
found that they would often make something that 
looks good but performs poorly, hoping it could be 
optimized by the rendering team before we had to 
ship. This sucks up far too much valuable time at 
the end of the project, and usually, isn’t even 
feasible. This shouldn’t really be surprising—at 
this stage it should be standard practice in the 
industry that artists understand and work within 
performance constraints. But, when deadlines 
loom and everyone is under pressure, it’s quite 
tempting to just get it done and fix it later. 

We found that the easier it is for artists to 
quantify performance and recognize when they’re 
doing something wrong, the more likely they are to 
do it right the first time. We learned this the hard 
way toward the end of PrototyPe when nearly 
every one of the lowest frame rate situations was 
due to the GPU time spent on effects. Once we gave 
artists easily accessible performance information, 
they were more than happy to take an active role in 
performance tuning.

This feedback started as a simple percentage 
that showed how much particle rendering cost 
overall compared to the per-frame budget. It has 
since been expanded to give the artists details on 
each individual effect (see Figure 2). They can see 
a list of all effects currently being played and how 
much each one costs in terms of memory usage 

and GPU load. For the GPU load, like the overall 
budget percentage, we use simple occlusion 
query counters to identify how many pixels each 
effect writes to the screen. This can be a great 
indicator of overdraw due to too many particles 
or poor texture usage (resulting in a large number 
of completely transparent pixels that cost time 
but don’t contribute anything to the final image). 
The artists can immediately see which effects 
cost the most and where to concentrate their 
optimization work. Other visualization modes are 
also useful for investigating performance 
issues, such as rendering a representation of the 
amount of overdraw or displaying the wireframe 
of a particular effect’s particles.

As is the case in rendering tech in general, the 
more direct feedback we can give artists about 
what they’re working on, the better they are able 
to do their job and the better the game looks 
overall—everybody wins!

uSing effect Scripting 
and lodS to booSt 
performance

/// Our effect scripting system was also built to 
allow us to change an effect’s level of detail based 
on the current rendering load, which became our 
main method of optimizing effects. Given that 
some effects can be visible from one end of the city 
to another, we needed to be able to concentrate our 
budget on the effects near the camera and change 
LODs based on the current rendering load.

The LOD system is mainly based on the 
attribute biases and overrides described 
above. The effect artist can create an LOD that 
changes the bias and overrides values of an On-screen effects performance feedback (figure 2A) with accompanying tool-side per-effect information (figure 2B).

figure 2B

figure 2A

game developer   |   april 2012 18



www.gdmag.com 19

effect at a certain distance. These values are 
then interpolated between all LODs based on the 
effect’s distance from the camera. For example, 
the artist might choose to lower the emission rate 
and increase the particle size of an effect when 
it’s far away—this would reduce the amount of 
overdraw while still maintaining a similar look, 
but with less of the detail that would only be 
noticed up close. The interpolation results in 
a continuous LOD transition that doesn’t suffer 
from any popping or other similar problems—
although they still have the option of switching 
to a completely different effect at a certain 
distance (with a cross-fade) or disabling the 
effect altogether. While reducing GPU cost is the 
main goal, these LODs usually end up saving both 
memory and CPU time, too.

The other metric we use when choosing LOD 
is the rendering cost of the previous frame’s 
particles. This uses the same occlusion query 
results as the statistics given to artists and is fed 
back into the LOD system. If the previous frame 
was relatively expensive, we don’t want to make 
the current frame worse by spawning even more 
expensive effects, so we instead play cheaper 
LODs in an attempt to recover faster. The artist 
has full control over what LOD to choose and at 
what level of performance it should be used. 

When the frame rate drops significantly 
due to particles, it is often not because of one 
expensive effect but due to many moderately 
expensive effects all going off at the same time. 
Any optimizations done in this regard must take 
into account what other effects are playing. 
For this we have “effect timers.” Using an effect 
timer, we can check whether a particular effect 
has already been played recently, and choose 

to play different effects based on this. A prime 
example is a big expensive explosion; we might 
only want one big explosion to go off at a time, 
and for any other simultaneous explosions to be 
smaller less expensive ones. This often happens 
when a missile is shot into the middle of traffic 
and three or four cars explode at the same time—
one car will play a good looking effect, while the 
other cars play smaller, cheaper ones. The visual 
impact is similar, but at a much lower rendering 
cost. 

Although our effect scripting system is 
meant mostly for optimization of rendering, it 
has useful applications for gameplay too. For 
example, when the player fires a tank shell into 
the distance, we want a suitably impressive and 
impactful explosion, but if the same explosion 
were to play right in front of the camera when 
the player is hit by an AI’s tank shell, the result 

would likely blind the player for a few seconds 
and completely block their view of the action. 
This can be very frustrating in the middle of 
combat, so in these situations we can use 
different LODs to reduce the number of particles, 
lower the opacity, and make the effect shorter 
and smaller. Not only does this make PrototyPe 2 
play better, it also uses a cheaper effect that has 
a lower impact on framerate.

particle rendering

/// Even with our LOD and scripting system doing 
its best, the mayhem of PrototyPe 2 means it is 
still possible for particle effects to become too 
expensive. When this happens, we take the more 
extreme measure of switching to bucketed multi-
resolution rendering (as presented by Bungie’s 
Chris Tchou at GDC 2011—see Reference 3). The 

figure 3A (top): has improved colors over
figure 3B (Bottom).

figure 3A

figure 3B



game developer   |   april 201220

decision to switch to a lower resolution render 
target (in our case half resolution—25% the 
number of pixels) is also based on the previous 
frame’s particle rendering cost. When it is low, 
all particles render to the full resolution buffer. 
This avoids having to do a relatively expensive 
upsample of a lower resolution buffer, which in 
simple scenes can be more expensive than just 
rendering particles at full resolution. 

Once performance slows to a certain level 
and the upsample becomes the better option, 
we switch certain effects to render to the lower 
resolution buffer while the rest of the effects 
stay at full resolution. In this case, the artists 
need to choose which effects need to stay at full 
resolution, usually small ones with high-frequency 
textures that suffer the most from the drop in 
resolution, such as sparks, blood, and fire. All other 
effects drop to rendering at the lower resolution. 
When even that results in too much GPU time, as 
a last resort we switch to every effect rendering 
into the lower resolution buffer, regardless of artist 
preference. For the upsample, we chose a nearest-
depth filter (as used in Batman: arkHam aSylum—
see Reference 4), which we found to be cheaper 
and better quality than a bilateral filter. 

We wanted to keep the actual shader used 
by the majority of our particles as inexpensive 
as possible, so it’s relatively simple. We call it 
the add-alpha shader, as it allows particles to 
render either additively (for effects like sparks 
or fire) or alpha-blended (for smoke) using the 
same shader. Whether the shader is additive 
or alpha-blended is determined by the alpha 
channel of the particle’s vertex color. To do this 

we pre-multiply the texture’s color and alpha 
channels and use a particular blend function— 
see Listing 1 for the relevant shader code. 

This is not a new technique, but it's one that 
is nonetheless central to our particle rendering; 
particles from every effect that uses this shader 
(and a shared texture atlas) can be merged 
together, sorted, and drawn in the same draw call. 
This eliminates the popping that would happen; 
otherwise     if two overlapping effects were drawn as 
separate draw calls, there would be a visible pop 
when the camera moves, and the order in which they 
are drawn changes. The vertex alpha can also be 
animated over time, so a particle can start its life as 
additive but finish as alpha-blended, which is very 
effective for explosions that start with a white-hot 
bang and end with thick smoke that fades away. 

You’ll also notice in the code listing that 
there are two texture fetches. This is for simple 
subframe interpolation of our texture animations, 
which allows us to use fewer frames and still 
produce a smoothly animating image.

lighting particleS 
without pixel ShaderS

/// in PrototyPe 2, the world is split up into three 
zones; green, yellow, and red. Each zone has 
a distinct style and color palette, as well as 
a few different times of day. Without lighting 
and shadowing, particles look wrong in many 
situations—too flat, too light or dark, and 
sometimes just the wrong color (see Figure 3 
for example). We realized they needed lighting 
but didn’t want to add the expensive pixel shader 

code in order to do per-pixel shadowing and image-
based lighting, as this would have vastly reduced 
the number of particles that we could render. 

Our solution was to do lighting per-vertex, 
but as a pre-pass into an intermediate “particle 
lighting” buffer. For each particle vertex, we 
render the lighting contribution to a pixel in the 
lighting buffer. This way we can use the pixel 
shader to do lookups into the shadow buffer and 
image-based lighting textures, using the same 
lighting code as the rest of the game and avoiding 
the performance pitfalls of vertex texture lookups 
on some platforms. 

This lighting buffer is then read in the 
particle’s vertex shader and combined with the 
vertex color, resulting in no extra instructions in 
the pixel shader. The only concern here was the 
performance of the vertex shader texture lookup 
on some platforms, particularly the PS3 and some 
earlier DX9 GPUs. In these cases we actually rebind 
the particle lighting buffer as a vertex buffer and 
just read from it as we would any other vertex 
stream. This is trivial on the PS3 as we have full 
control over how memory is viewed and accessed, 
and for the DX9 GPUs that support it, we use the ATI 
R2VB extension (as detailed in Reference 5).

putting it all together

/// Particles are a significant part of bringing the 
world of PrototyPe 2 to life. Various performance 
management systems work together to deliver 
effects without exceeding available resources. 
Lighting and shadowing add a huge amount of visual 
quality, and by doing it per-vertex, we are able to light 
every particle in the world at considerably less cost 
than we otherwise could have. And finally, one of the 
most important aspects of effects tech development 
is giving the artists the tools they need to do their job-
and to help us do ours. After all, they’re the ones that 
make us all look good! 

Keith O’COnOr is a senior rendering coder at Radical 

Entertainment in Vancouver, where he is currently working 

hard to ship PrototyPe 2 , which will be out any moment now. 

He can be reached at keith.oconor@gmail.com, and random 

140-character thoughts can be found at @keithoconor. 

[The author would like to acknowledge Kevin Loose and 

Harold Westlund who authored many parts of the original 

Radical particle effects systems.]

liSting 1   add-alpha Shader code

// Add-alpha pixel shader. To be used in conjunction
// with the blend factors {One, InverseSourceAlpha}
 
 float4 addalphaPS(
 float4 vertexColour : COLOR0,
 float2 uvFrame0     : TEXCOORD0,
 float2 uvFrame1     : TEXCOORD1,
 float subFrameStep  : TEXCOORD2 ) : COLOR

{

// Fetch both texture frames and interpolate

 float4 frame0 = tex2D( FXAtlasSampler, uvFrame0 );
 float4 frame1 = tex2D( FXAtlasSampler, uvFrame1 );
 float4 tex = lerp(frame0, frame1, subFrameStep);

// Pre-multiply the texture alpha. For alpha-blended particles,
// this achieves the same effect as a SourceAlpha blend factor

 float3 preMultipliedColour = tex.rgb * tex.a;
 float3 colourOut = vertexColour.rgb * preMultipliedColour;

// The vertex alpha controls whether the particle is alpha
// blended or additive; 0 = additive, 1 = alpha blended,
// or an intermediate value for a mix of both

 float alphaOut = vertexColour.a * tex.a;
 return float4( colourOut, alphaOut );

}

referenceS

1: www.gdcvault.com/play/1013444/The-Gym-Where-
The-Incredible
2 :  htt p : / / a ltde v blogaday. c om / 2011 / 02 / 12 /
alternatives-to-malloc-and-new
3:  www.gdcvault.com/play/1014348/HALO-REACH-
Effects
4 :  h t t p : / / d e v e l o p e r . d o w n l o a d . n v i d i a .
c o m / a s s e t s / g a m e d e v / f i l e s / s d k / 1 1 /
OpacityMappingSDKWhitePaper.pdf
5: http://developer.amd.com/media/gpu_assets/R2VB_
programming.pdf


